CHARACTERIZATION OF COPPER DIFFUSION IN SILICON SOLAR CELLS

Achim Kraft, Christian Wolf, Jonas Bartsch, Markus Glatthaar

Fraunhofer Institute for Solar Energy Systems ISE

5th Metallization Workshop
Constance, October 21st 2014
www.ise.fraunhofer.de
Introduction

- Copper front-side metallization based on a fine line screen-printed silver seed-layer

+ Lower material costs (silver consumption < 16 mg/cell front-side\(^1\))
+ Inline capable (screen printing + light induced plating), little alterations to existing production lines
+ Comparable efficiency potential

- One of the open questions:
 - Long term stability

Cu Migration through SiN\textsubscript{x} Layers2
Experiment with Lifetime Samples

- Symmetric lifetime samples:
- Variated pre-treatment: HF-Dip (1\%, 30 sec.)
- Nitride variation: inline PECVD, sputtered, batch PECVD, Al\textsubscript{2}O\textsubscript{3} reference
- Copper evaporation (200-300 nm)
- Copper diffusion (Hotplate 300°C/500h)
- Characterization of copper diffusion using carrier lifetime (QSSPC) and photoluminescence imaging
Copper Migration through SiN$_x$ Layers
Photoluminescence Results

- PL-images at one sun
- samples without pre-treatment
- Al$_2$O$_3$ reference group show Cu influence on carrier life time
- All nitrides resist Cu diffusion without pre-treatment

<table>
<thead>
<tr>
<th></th>
<th>Al$_2$O$_3$</th>
<th>Inline PECVD</th>
<th>Sputtering</th>
<th>Batch PECVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial state</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After Cu + thermal anneal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Image showing PL images at one sun and after Cu + thermal anneal for different deposition methods](image-url)
Copper Migration through SiN$_x$ Layers
Lifetime Measurement (QSSPC)

- Al$_2$O$_3$ reference group show Cu influence on carrier lifetime
- Inline PECVD and sputtered nitride resist Cu diffusion even with HF-dip and screen printing
- Batch PECVD nitride allows Cu diffusion after HF-Dip and screen printing
Effectiveness of Nickel Diffusion Barrier\(^2\) Degradation of Cells

- Standard 156x156 mm\(^2\) cells with different nickel diffusion barrier masses (10-40 mg per wafer)
 - 10 mg \(\approx 0.1 \mu m\)
 - 20 mg \(\approx 0.2 \mu m\)
 - 30 mg \(\approx 0.4 \mu m\)
 - 40 mg \(\approx 0.6 \mu m\)

- Thermal stress at 200°C, 225°C, 250°C and 275°C on hotplates

- Characterization of the pFF\(^4\)

\(^3\) J. Bartsch et al., 21.8 % efficient n-type solar cells with industrially feasible plated metallization, 4th International Conference on Silicon Photovoltaics, ’s-Hertogenbosch, the Netherlands, 2014

Effectiveness of Nickel Diffusion Barrier Degradation of Cells – pFF Characterization

- More plated nickel leads to slower cell degradation
Effectiveness of Nickel Diffusion Barrier
Degradation of Cells – Arrhenius Plot

→ No long term stability issues due to Cu migration expected for a nickel diffusion barrier with > 20 mg plated nickel
Effectiveness of Nickel Diffusion Barrier Module Degradation

- Damp heat test 1500 h (85°C, 85% r. h.) according to IEC 61215
- Only the module without nickel diffusion barrier shows a degradation of 1.2%
- Electroluminescence measurements confirm these results

→ Even the module without diffusion barrier passes IEC criteria damp heat test

→ Copper not critical?

→ IEC procedure not suitable to show copper impact on module?
Effectiveness of Nickel Diffusion Barrier
Comparison Cell Degradation – Module Degradation

- Cell degradation at pFF loss of 0.25 % (black marks) compared to module degradation (red mark)
- First hint that degradation method on cell level is able to predict degradation on module level
- Result restricted by statistics → only one data point

→ Predicted long term stability on cell level shows good accordance with measured module degradation after 1500 h damp heat test.
Influencing Factors of Cell Degradation

- Degradation of cells with screen-printed Ag-seed-layers using different pastes
- Metallized area is varied
 - Degradation depends on the used seed-layer

Paste 1
- 1 μm
- 47 μm

Paste 2
- 9 μm
- 59 μm

Paste 3
- 3 μm
- 100 μm

![Graph showing ln(t/s) vs. 1000/T]
Influencing Factors of Cell Degredation

Firing Temperature

- Degradation of cells with seed-layer firing temperatures of 860°C, 890°C, and 920°C
- Higher firing temperature leads to faster cell degradation

![Graph showing ln(t/s) vs. 1000/T for different firing temperatures and Ni contents.](image)
Summary

- Silicon nitride stops copper diffusion even after HF-Dip and screen printing
- 20 mg nickel effectively hinders Cu diffusion on the tested seed-layer
- Long term stability predicted by cell degradation shows accordance with module degradation
- Degradation behaviour of copper also depends on the seed-layer and the firing temperature
Thank you for your Attention!

Fraunhofer Institute for Solar Energy Systems ISE

Achim Kraft

www.ise.fraunhofer.de
achim.kraft@ise.fraunhofer.de