5th Metallization Workshop

Optimized stencil print for low Ag paste consumption and high conversion efficiencies

H. Hannebauer¹, S. Schimanke¹, T. Falcon², P. P. Altermatt³, T. Dullweber¹

¹Institute for Solar Energy Research Hamelin (ISFH) ²DEK Solar

³Department of Solar Energy, Leibniz University Hannover

Motivation

- Cost factor for cell processing: Silver pastes
- Further improvement of screen printing: dual print
- Very low silver paste consumption reported with dual print

Dual print technique

Dual Print

1st print: Screen

2nd print: Stencil

Printing parameters:

- Stencil aperture: 40 µm
- Standard rectangular shaped 3 busbar
- Used squeegees:
 - Shore hardness 75A
 - Shore hardness 80A
 - Shore hardness 95A
 - Metal
- Printing pressure: 2.5 kg 6 kg
- Snap off and printing speed is kept constant

Different finger height/ finger paste consumption

Varying the paste consumption

Shore hardness 75A + 3 kg printing pressure

Shore hardness 95A + 5 kg printing pressure

Metal squeegee + 5 kg printing pressure

Squeegee Stencil

More silver paste in the stencil opening

Finger profiles

Nearly uniform finger height along the finger length

-10.0

-5.0

15.0

Dependence of finger paste consumption on finger height

Error bars show min./max.
 of average finger heights
 at three measurement
 positions

 Very uniform distribution of finger heights across the cell with metal squeegee

Finger line resistance

• Physical model for finger line resistance r_i :

$$r_L = \frac{\rho_{paste}}{A_{finger}}$$

- A_{finger} calculated with trapezoidal shaped finger
- $\rho_{paste} = 4 \mu Ohm*cm$

Specific contact resistance

- Mathematical power function used to fit the specific contact resistance ρ_c values
- Dependence of ρ_c on paste consumption and finger height is unexpected

PERC solar cell process

Wafer cleaning

Rear protection layer

Texturing

Phosphorus diffusion

PSG + dielectric etch

Rear: AlO_x/SiN_y

Front: PECVD-SiN_x

LCO at the rear

Ag dual print

Al screen-printing

Co-firing

PERC solar cell results

★ = 20.9% efficiency with improved emitter process

Analytical modelling

Total resistance:

$$R_s = R_{finger} + R_{contact} + R_{emitter} + R_{base} + R_{rear}$$

Finger resistance:

$$R_{finger} = \frac{2}{3} \cdot r_L \cdot l_f \cdot A_{uc}$$

Contact resistance:

$$R_{contact} = \frac{\sqrt{R_{sheet} \rho_c}}{l_f} \coth\left(\frac{w_f}{2} \sqrt{\frac{R_{sheet}}{\rho_c}}\right) \cdot A_{uc}$$

• Assuming constant values for $R_{emitter}$, R_{base} , and R_{rear} and use fitted curves for r_{L} and ρ_{c} values

l l Leibniz 102 Universität 1004 Hannover

Modelling of series resistance

Good accordance for more than 40 mg finger paste consumption

Simulations of optimized finger profiles

Semiconductor device simulation (Sentaurus)

Circuit simulation (SPICE)

Solar cell simulation

Leibniz
Loo 4
Leibniz
Universität
Hannover

Simulation of series resistance

- Finger height is assumed to be perfectly uniform across the finger length and the cell
- Observed dependence of ρ_c on paste consumption is not include
- Low R_s for 5 μm finger height corresponds to 40 mg paste consumption

Outlook: Optimization of front side grid

Dual-printed record PERC efficiency of 21.2%* at ISFH¹

* Independently confirmed by ISE CalLab

- Smaller busbar pitch → more than 50% less crosssection area needed
- Less than 30 mg finger paste consumption for high cell efficiency
- Additional 2 mg reduced Ag paste consumption due to reduced busbar area

Summary

- High conversion efficiency of 20.9% with dual printed PERC solar cell achieved
- Average efficiency of 20.2% demonstrated with dual print for finger paste consumption down to 60 mg
- Simulations indicate possible further reduction of finger paste consumption down to 40 mg
- Potential of high cell efficiency with less than 30 mg finger paste consumption additionally applying 5 busbar front grid
- Root cause for dependence of ρ_c on paste consumption and finger height need further investigations

Acknowledgement

- Thanks to S. Schimanke for solar cell processing and P. P. Altermatt for support in the simulations.
- This work was supported by the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety in cooperation with

Continuous support from **U**

