ELECTROCHEMICAL CONTACT SEPARATION FOR PVD ALUMINUM BACK CONTACT SOLAR CELLS

M. Kamp, A. Maywald, J. Bartsch, R. Efinger, R. Keding, M. Glatthaar, S. W. Glunz, I. Krossing

Fraunhofer Institute for Solar Energy Systems ISE

5th Metallization Workshop
Constance, October 20th 2014

www.ise.fraunhofer.de
AGENDA

- Metallization of back contact solar cells
- Aluminum anodizing
 - Industrial applications
 - Electrochemical reaction
- Local anodizing of aluminum
 - Mask based approaches
 - Novel maskless approaches
- Summary
Metallization of IBC Solar Cells

Motivation

- Back contact solar cells
 - High efficiencies reached
 - Panasonic 25.6%¹
 - SunPower 25.0%²
 - Proprietary process from SunPower
 - Aluminum as contacting material
 - Metal contact separation challenging
→ Alternative contact separation process necessary

¹ Panasonic HIT Solar Cell Achieves World’s Highest Energy Conversion Efficiency of 25.6% at Research Level, 04.2014
Metallization of IBC Solar Cells
Comparison of Process Steps

Established Process\(^3\)

1. PVD-Aluminum
2. PVD-TiW
3. PVD-Copper
4. Resist printing
5. Plating
6. Resist removal
7. Metal etching

Metallization of IBC Solar Cells
Comparison of Process Steps

Established Process\(^3\)

1. PVD-Aluminum
2. PVD-TiW
3. PVD-Copper
4. Resist printing
5. Plating
6. Resist removal
7. Metal etching

Alternative Maskless Process

1. PVD-Aluminum
2. Al structuring???
3. Zincate Process\(^4\)
4. Plating

Metallization of IBC Solar Cells
Comparison of Process Steps

Alternative Maskless Process

1. PVD-Aluminum
2. Al structuring???
3. Zincate Process\(^4\)
4. Plating

Aluminum Anodizing
Industrial Applications and Properties of AAO

- Aluminum can be converted into electrical isolating aluminum oxide by anodizing
- Structure of anodic aluminum oxide (AAO) first reported in 19535
- Industrially transferred a few years later

Today’s main applications
- Anti corrosion treatment of Al alloys (aircraft and automotive)
- Decorative surfaces (color coating)
- Electronics industry
- Template for nanowire fabrication

\begin{itemize}
\item \cite{5} F. Keller, M. S. Hunter, D. L. Robinson, J. Electrochem. Soc. 100, 411, 1953
\item \cite{6} G. D. Sulka, Nanostructured Materials in Electrochemistry, 2008
\item \cite{7} Anodizing, en.wikipedia.org/wiki/anodizing, 2014
\end{itemize}
Aluminum Anodizing
Electrochemical Reaction

Main anodizing reaction

Cathode: \(6 \text{H}_3\text{O}^+ + 6\text{e}^- \rightarrow 3 \text{H}_2 + 6 \text{H}_2\text{O}\)

Anode: \(2\text{Al} \rightarrow 2\text{Al}^{3+} + 6\text{e}^-\)
\(2\text{Al}^{3+} + 9\text{H}_2\text{O} \rightarrow \text{Al}_2\text{O}_3 + 6 \text{H}_3\text{O}^+\)

Overall: \(2\text{Al} + 3\text{H}_2\text{O} \rightarrow \text{Al}_2\text{O}_3 + 3\text{H}_2\)

Formation of Anions \(\text{OH}^-\) and \(\text{O}^{2-}\)

\(\text{O}^{2-}\) and \(\text{OH}^-\) ions formation at the oxide/electrolyte interface from water interaction with absorbed \(\text{SO}_4^{2-}\) anions \(^6\)

Aluminum Anodizing

Pore Formation

- Stages of pore formation
- Potential developing depends on the formation stages
- Crack initiation in the oxide barrier layer
- Local increase of current density results in pore formation

Top: Kinetics of porous oxide growth in galvanostatic regimes
Bottom: Stages of anodic porous oxide development

© Fraunhofer ISE
Aluminum Anodizing
Pore Formation

- Stages of pore formation
- Potential developing depends on the formation stages
- Crack initiation in the oxide barrier layer
- Local increase of current density results in pore formation
- Volume expansion

Volume expansion observed during anodization of aluminum

Anodized aluminum on textured silicon surface

Local Anodizing
Previous Approaches for Contact Separation

- Well known local anodizing processes by masking (SiO$_2$ as mask8,9, PL organic resists9,10)

- Disadvantages
 - SiO$_2$ has to be structured expensively before anodizing
 - Patterned printed resists has to be removed in an extra step
 - Adhesion of printed resist could fail by volume expansion
 - Process speed is limited

- Local and fast anodizing process is desired to establish AAO in PV
Local Anodizing

Previous Approaches for Contact Separation

<table>
<thead>
<tr>
<th>Step</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PVD-Aluminum</td>
</tr>
<tr>
<td>2</td>
<td>PVD-TiW</td>
</tr>
<tr>
<td>3</td>
<td>PVD-Copper</td>
</tr>
<tr>
<td>4</td>
<td>Resist printing</td>
</tr>
<tr>
<td>5</td>
<td>Plating</td>
</tr>
<tr>
<td>6</td>
<td>Resist removal</td>
</tr>
<tr>
<td>7</td>
<td>Metal etching</td>
</tr>
</tbody>
</table>

1. • PVD-Aluminum
2. • Local Anodizing??
Novel Maskless Approaches
Metallic Elevations Stamp

- Wetting of elevations
 - Difficult process control
 - Expanded anodizing
 - Risk of short circuit
 - Short process duration (< 5 sec)
Novel Maskless Approaches
Local Sealing by Rubber

- Aluminum is locally shielded by a rubber seal
- Narrow lines are reached (< 70 µm)
- Short process duration (< 5 sec)
- Force application to wafer necessary
Novel Maskless Approaches

Electrochemical Screen Printing

- Advantages
 - Screen printing established in PV
 - Fast process (< 5 sec)
 - Narrow anodized line widths are realized (100-150 µm)

- Challenges
 - Special screen to provide current transport
 - Special emulsion (chemically resistive against acid pastes)
 - Acidic pastes still have to be optimized for printing
Novel Maskless Approaches
Electrochemical Dispensing

- Advantages
 - Small reaction zone
 - Excellent process control

- Challenges for further experiments
 - Line width > 200 µm
 - Line interruptions
Local Anodizing

Previous Approaches for Contact Separation

Replacement of three process steps by maskless local anodizing

1. PVD-Aluminum
2. PVD-TiW
3. PVD-Copper
4. Resist printing
5. Plating
6. Resist removal
7. Metal etching

1. PVD-Aluminum
2. Local Anodizing
3. Zincate Process
4. Plating
Summary

- **Alternative efficient metal patterning processes** for back-contact solar cells are needed, especially for aluminum.

- **Anodizing of Aluminum introduced** in general, full layer localized anodizing suitable for PV application.

- **In-situ anodizing** via screen-printing or dispensing prove to be promising methods for high through-put industrial application.
Thank you for your Attention!

Fraunhofer Institute for Solar Energy Systems ISE

Mathias Kamp

www.ise.fraunhofer.de
Mathias.kamp@ise.fraunhofer.de